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ABSTRACT 
The fractal nature of DNA sequences is 

explored by employing the singularity spectral 
analysis (multifractal analysis). The multifractality 
character of the nucleotide sequences along the 
DNA strand is revealed.  Also, a local scaling 
analysis is devised and exploited to study the 
myosin heavy chain (MHC) gene family of 
different species.  The result shows a tendency of 
clustering of base distribution in MHC genes for 
higher-level species, and an increasing correlation 
between the coding segments (exons) of the gene 
and the value of the local scaling exponent (Hölder 
exponent) α  with evolutionary order.  Basically, 
our analysis suggests that the exon parts of the 
gene of more complicated species are more likely 
to fall into regions where the values of α  are less 
than one. 

INTRODUCTION 
DNA is a long double helical chain composed 

of a large number of nucleotides, each carrying one 
of the four bases (either purines or pyrimidines) 
conventionally symbolized by the four letters: A 
(adenine), T (thymine), C (cytosine) and G 
(guanine).  The sequential order of these four 
bases along the DNA chain encodes important 
genetic information concerning instructions of 
critical life activities and inheritable features of a 
living organism.  There are, for instance, roughly 
a total three billion base pairs in the complete 
genomic sequences of a human, implying a 

tremendous amount of hereditary information 
possibly carried by DNA. 

 Recent studies [1-6] have discovered that the 
nucleotide sequences in DNA exhibit the ubiquity 
of long-range correlations extending over many 
decades of base positions.  That is, the appearance 
of a particular base in a DNA sequence depends 
virtually to some extent on the bases at a large 
distance ahead of it.  Typically, such correlation 
feature was analyzed either by Fourier 
transforming the repetition of the appearance of a 
particular base along the DNA strand [1-3], or by 
converting the base sequence into a random-walk 
process commonly applied to the study of a 
fluctuating time-series [4-6].  In either approaches, 
the resulting power spectra measurements exhibit 
the trend of a power-law behavior similar to the so 
called βf1 ⎯noise found in many naturally 
occurring fluctuations.  These fluctuations are 
actually a time-scale analogy to many 
scale-invariant geometric configurations, such as 
mountain profiles, coastlines and fern leaves which 
possess the property of self-similarity (small 
portions resemble the structure in whole when 
magnified) and are now categorized as ‘fractals’ 
[7].  Although there has been a debate about the 
existence of correlations between bases in DNA 
sequences [8-13], increasing evidences show that 
long-range correlations are intimately tied with 
non-coding regions (intergenetic sequences or 
introns) of the DNA [14-19].  In coding regions 
(genes or exons), the base sequences are less 
correlated and appear to be more random-like.  
Origin of this long-range correlation and its 
biological implications are still not well understood 
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at this moment.  Some [20,21] suggest that it is 
simply a result of repetition of short sequences in 
the non-coding region of DNA, while others [22] 
believe it might be related to the dynamical 
mechanisms (mutation, transposition, replication, 
insertion, substitution, alternative splicing, etc.) 
developed in the evolutionary process. 

From a geometric point of view, the sequence 
of a particular base in the DNA strand can be 
viewed as a distribution of a set of points along a 
line.  It is common that naturally evolving 
systems are seldom characterized by a single 
scaling ratio; different parts of a system may be 
scaling differently.  That is, the clustering pattern 
is not uniform over the whole system.  Such a 
system is better characterized as a ‘multifractal’ [7, 
23].  Distributions of stars in a galaxy and 
epicenters of earthquakes in a seismically active 
region are just two examples.  The notion is in the 
same way applied here to the study of DNA 
sequences.  Since the production of a polypeptide 
chain (protein) depends only on the linear order of 
bases along the DNA strand, spatial distribution 
patterns of bases are most naturally scrutinized 
using the multifractal formalism.  Specifically, 
the type II myosin heavy chain (MHC) genes 
belonging to seven different species are analyzed 
in this study.  Local scaling properties of coding 
and non-coding segments of this MHC gene family 
are also investigated by examining the Hölder 
exponent⎯a crowding index that quantifies the 
local clustering of base distributions.  The reason 
for choosing this particular gene is that it 
represents one of the few gene families whose 
complete sequences are well documented in the 
GenBank for a phylogenetically diverse group of 
organisms, thus providing us good opportunity to 
look into changes in fractal properties of spatial 
organization of their components with evolution. 

MULTIFRACTAL FORMALISM 
Basically, the multifractal formalism is 

introduced to characterize non-uniformity of a 
fractal distribution.  Let l  be the size of the 
covering boxes and )(lPi  be the fraction of points 
(mass density or probability measure) in the 

−thi box, then in the limit 0→l  we can define 
an exponent (singularity strength, or Hölder 
exponent) α  by 

αllPi ∝)( . (1) 

In general, α  is not uniformly distributed and 
hence can be taken as a crowding index for local 
cluster.  If we count the number of boxes )(αN  
where the probability measure iP  has singularity 
strength between α  and αα d+ , then )(αf  
can be loosely defined as the fractal dimension of 
the set of boxes with singularity strength α  by 
[23] 

)()( αα flN −∝ . (2) 

The formalism thus describes a multifractal 
measure in terms of interwoven sets of different 
singularity strengths α , each characterized by its 
own fractal dimension )(αf . 

Another useful multifractal formalism is the 
so-called generalized dimension defined as [24,25] 
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where the probability iP  is raised to the power of 
q . Thus different values of q emphasize the 
distribution with different degrees of clustering 
vicinities.  In a point distribution set, the qD  
with the limit +∞→q  is associated with the 
fractal dimension of most densely occupied regions 
in the set, while qD  with −∞→q  is associated 
with the fractal dimension of least populated 
regions.  This formalism then quantifies 
non-uniformity of a distribution based on the 
statistical moments of its probability measure. 

As the generalized dimension qD  is easier 
to compute, conventionally, the multifractal 
spectrum )(αf  is usually evaluated from qD  
via a Legendre transformation [23]: 
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However, as pointed out in [26,27], validity of the 
Legendre transformation relies on the smoothness 
of functions )(αf  and qD .  In the attempt to 
obtaining qD  from scaling the probability 

measures q
iP  with box sizes l , naturally 

evolving and experimentally observed data often 
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produce a log-log plot featured by oscillations and 
scatters rather than showing a perfect linear 
behavior, especially when q  is large.  This then 
results in a qD  curve with large uncertainties.  
Applying Legendre transformation to such a curve 
may generate false result and make the error 
estimation in the α−f  formalism a difficult task.  
To circumvent this pitfall, a direct determination of 

)(αf  was proposed by [26,27].  The method 
involves first constructing a one-parameter family 
of normalized measures )(qμ  at each box i  
from probabilities )(lPi : 

[ ]
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=
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then )(αf  is just the Hausdorff dimension of the 
measure-theoretic support of )(qμ , which is given 
by 
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The value of the singularity strength α , averaged 
with respect to )(qμ , can be computed by 

l

lPlq
q i

ii

l log

)(log),(
lim)(

0

∑

→
=

μ
α . (7) 

Equations (6) and (7) provide an alternative 
definition of the singularity spectrum which can be 
used to obtain )(αf  directly from real-world data 
without appealing to the Legendre transformation.  
The method is used in the subsequent calculations 
of this study. 

APPLICATION TO MHC GENE 
We begin our analysis by forming a 

subsequence containing purines (or pyrimidines) 
only.  That is, starting from the beginning of a 
gene and reading down along the strand, each base 
position is either filled by a point whenever a 
purine (A or G) is encountered, or left empty when 
a pyrimidine (C or T) is met.  The resulting 
purines sequence is treated as a distribution of a set 
of points in a one-dimensional line.  We then 
study the spatial pattern of this set of points using 
the multifractal formalism (6) and (7).  There are 

also other possible rules of forming subsequences, 
for examples, we can form subsequence of each 
different base A, T, C, G separately (single base 
rule); subsequence containing A and T (or C and G) 
only (hydrogen bond rule); etc.  In general, we 
find that the original purine-pyrimidine rule 
provides the most substantial results, probably due 
to the difference in the molecular structures 
between purines and pyrimidines, and a chemically 
complementary role of purine-pyrimidine. 

Figure 1 plots the singularity spectrum 
( α−f  curve) of human cardiac β -myosin 
heavy chain gene (GenBank accession # M57965) 
of total length (# of base pairs) 28438.  The 
familiar, inverted, downward-opening parabola 
shape of curve is seen.  The cross bars on the 
symbols represent uncertainties in the values of α  
and f  arising from the linear fitting procedure in 
(6) and (7).  The wide opening )4.183.0~( −α  
of the parabola indicates that purine bases are not 
uniformly distributed along the human MHC gene; 
rather, they tend to form clusters of different sizes.  
To confirm this heterogeneity in base distribution, 
we scramble the positions of these bases by a 
random scheme, and plot the resulting )(αf  
spectrum in the same figure.  A much smaller 
opening curve is shown, indicating that the base 
sequence after scrambling has a more uniform 
distribution.  The remaining slight opening 

)08.194.0~( −α of the curve is perhaps due to the 
so-called ‘strand bias’ (there are slightly more 
purines than pyrimidines in MHC) normally 
observed in genomes. 

Detail spatial organization of the nucleotides 
sequence can be further analyzed by inspecting the 
distribution of the singularity strength α .  The 
Hölder exponent defined in Eq.(1) reflects the 
invariant scaling nature of the population density 
of purine bases in a small region centered at 
position i  with that in the vicinities of increasing 
sizes.  Variations in α  values with base position 
i  signify changes in the local clustering pattern of 
purine bases along the DNA strand.  In Fig.2, for 
example, α  less than one denotes a densely 
occupied region surrounded by sparse vicinity, 
while α  greater than one represents a less 
populated region surrounded by dense vicinity. 

Figure 3 shows a typical log-log plot of 
purine base populations )(lPi  vs. sizes of boxes 
centered at base position 4259=i  of human 
MHC gene.  The smallest size of the box has a 
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width of just a few base pairs (bp), while the 
largest box can extend to a length of a few 
thousand bp.  To avoid edge effect, the largest 
size of the box is limited to 1/5 of the total bp in 
the chain, in this case, about 5600 bps.  The local 
Hölder exponent α  is then obtained from linear 
fitting the data points within this range.  The error 
in α  is estimated from the standard deviation of 
fitted data from the linear slope. 

Figure 4 presents the variation of α  along 
the entire strand of human MHC gene.  Irregular 
fluctuation of the curve is apparent, suggesting 
once again non-uniformity in base distributions.  
Note that in this case we did not analyze α  from 
the very beginning of the sequence.  Instead, the 
analysis was initiated at about 1/10 position of the 
sequence.  The reason is to eliminate the edge 
effect that will enter into analysis as the largest box 
size extending beyond the ends of the sequence.  
Similarly, the last 1/10 portion of the sequence was 
not analyzed for the same reason. 

In Fig.5, we delete all introns and stitch 
together the remaining exon segments of the 
original MHC to form a shorter sequence 
containing protein-coding region only.  The result 
shows a relatively less fluctuating α  curve.  The 
corresponding )(αf  spectrum is given in Fig.6.  
Comparing with the spectrum in Fig.1, a much 
narrower )(αf  is observed.  Scrambling the 
sequence produces little difference in )(αf , 
implying that the protein-coding sequence has a 
more uniform and random-like base distribution 
than the original intron-rich sequence.  This 
observation is consistent with previous findings 
based on random-walk model that long-range 
correlation is associated with intron parts of DNA 
sequence. 

FURTHER RESULTS AND DISCUSSION 
When we overlay the known positions of 

exon segments (extracted from the GenBank) on 
the α  curve calculated from the human MHC 
gene, it is surprising to find the striking feature that 
most exons appear to be at the locations where the 
local Hölder exponent α  is less than one (see 
Fig.7).  Some of the segments may even fit 
perfectly into the valley of 1<α .  If we define a 
‘matching ratio’ as the percentage of exon that fall 
in the region with 1<α , then in this case, the 
matching ratio is )%8.86( 2.3

1.4
+
− .  The ± errors are 

estimated from the uncertainties in α  values (see 

Fig.3), which then lead to an up- or downward 
shifting of the α  curve and hence changing the 
matching ratio. 

Table 1 summarizes the results of our local 
scaling analysis on the MHC gene family chosen 
from seven different species, ranging from yeast to 
homo sapiens (human).  The third column of the 
table lists the total length (measured in bp) of the 
MHC gene of each organism and the length that 
was actually analyzed.  The fourth column shows 
the number of exon segments in the genes and in 
the fifth column, the percentage of length exons 
occupy.  It is noticed from all these documentary 
data that MHC gene of higher species has longer 
total length and more fragmented coding regions 
that take up less portion of the whole sequence.  
The last column lists the matching ratio in an 
ascending order.  Apparently, there is a tendency 
of increasing correlation between the exon 
locations and regions in the sequence where 1<α  
with phylogenetic order.  In order to assess 
whether such a trend could be resulted from a 
possible bias in α  value (e.g., there are probably 
more places with 1<α  in the genetic sequence of 
higher species), we list in the sixth column of 
Table 1 the percentage of length in the sequence 
with 1<α .  All species have roughly the same 
percentage value; the maximum difference is about 
4% only.  Yet the matching ratio is 50% in yeast 
and 87% in human.  Obviously, the result is not 
fortuitous. 

The biological explanation of this 
phenomenon is not well established at this moment.  
However, our present results do lend support to the 
findings of [28,29] who studied the cluster-size 
distributions in coding and non-coding DNA 
sequences.  Notice that in Fig.7, large peaks in 
α  curve are normally found in between exon 
segments, indicating the existence of large clusters 
(either pyrimidine or purine) in the non-coding 
regions.  This is in consistence with the claim 
made in [28,29] that the power-law behavior of the 
base sequence is associated with the tendency of 
large pyrimidine and purine cluster formation in 
the non-coding regions.  The possible 
evolutionary mechanisms for such formation may 
need further study.  Nevertheless the present 
scaling analysis, when implemented with other 
statistical techniques, does have the potential to 
become one of the effective tools for rapid location 
of possible coding sites in genomic sequences. 

Figure 8 compares the singularity spectra 
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obtained from the seven species.  The gradual 
opening of the )(αf  curve suggests an increasing 
complexity in the structures of DNA sequences.  
Again, the degree of complexity is shown to follow 
the evolutionary order. 

CONCLUSION 
A multifractal formalism has been employed 

to investigate the fractal nature of DNA sequences.  
Phylogenetic study of spatial organizations of base 
distributions in MHC gene family has also been 
performed using a local scaling analysis technique.  
Both the singularity spectra )(αf and local Hölder 
exponent distribution curves ( −α curve) display a 
tendency of increasing non-uniformity and 
clustering of bases in the structures of DNA chains 
with evolution.  Furthermore, it is observed that 
coding segments of genes fit well with the 1<α  
sites of chains in higher-order species, suggesting 
the formation of pyrimidine clusters in the 
evolution of intron sequences.  Present findings 
may point to an important direction for better 
understanding of the functional roles of 
evolutionary mechanisms in terms of structural 
properties in coding and non-coding parts of 
genomic sequences. 
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Table 1.  Results of local scaling analysis on MHC genes of different species. 

 

Family Organism 
GenBank 

Accession # 
(locus) 

Length 
analyzed(bp)
(total length)

# of exon 
segments

% 
exon 

length

%α<1 
in analysis 

%α<1 
in exon 

Saccharomyces cerevisiae 
(yeast) 

X53947 
(SCMYO1G) 

4889 
(6108) 1 100 50.0  50.0+5.8

    -5.7
Caenorhabditis elegans#3 
(worm) 

X08067 
(CEMYO3) 

9285 
(11604) 7 50.9 51.6 53.0+6.7

    -7.8
Brugia malayi 
(worm) 

M74000 
(BRPMYOHEA)

9415 
(11766) 13 47.6 52.3 64.8+5.6

    -6.1
Drosophila melanogaster
(fruit fly) 

M61229 
(DROMHC) 

18132 
(22663) 30 35.4 52.2 67.7+5.6

    -6.2
Rattus norvegicus 
(rat) 

X04267 
(RNMHCG) 

20606 
(25755) 41 23.4 50.1 72.8+2.6

    -4.3
Gallus gallus 
(chicken) 

J02714 
(CHKMYHE)

24890 
(31111) 38 18.7 50.9 75.8+4.5

    -5.2
Homo sapiens 
(human) 

M57965 
(HUMBMYH7)

22752 
(28438) 40 21.1 54.3 86.8+3.2

    -4.1

 


